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An Empirical Tryout of Kernel Equating

The purpose of the study

"Kernel equating" is a method of equating test scores, devised by

Holland and Thayer (1989). It can be used when scores on two forms of a test
are to be equated directly or when they are to be equated through a common

anchor. The study described in this report was intended to provide
information to answer some practical questions about this method of equating:

How accurate are the equated scores produced by the method?

To what extent does the accuracy of the equated scores depend on the
value of a parameter that may be specified by the user?

How accurate are the estimates of the standard errors of the equated
scores?

How does the accuracy of the equated scores produced by this method
compare with the accuracy of those produced by some other methods?

What is kernel equating?

Kernel equating was devised originally as a solution to a problem
arising from the equipercentile definition of equated scores. By this
definition, score x on Form X and score y on Form Y are equated in a
population of test-takers if and only if they have the same percentile rank in

that population. But in the real world of educational testing, it is rare to
find a score on Form Y that has exactly the same percentile rank in the test-
taker population as score x on Form X.

This problem arises because the score distribution on a given test form

is discrete. The problem exists even if the score distributions in the
population are known exactly. Holland and Thayer's solution -- kernel
equating -- consists of replacing the discrete score distributions with
continuous distributions and then equating the continuous distributions. This

"continuization" of the distributions is accomplished by replacing the
frequency at each discrete score value with a continuous frequency
distribution centered at that value. The distribution that replaces the

discrete frequency is called the "kernel".1 Holland and Thayer's kernel

equating method uses a kernel that is normal (Gaussian). The continuization
of the distributions makes an exact equipercentile equating possible, since it

'Kernel equating takes its name from kernel smoothing, a general term for
the process of smoothing a function by replacing each discrete value with a
frequency distribution. Kernel smoothing is sometimes done with a discrete
kernel distribution, such as the binomial, in which case it is equivalent to a
weighted moving average smoothing.



is always possible to find a score having a specified percentile rank in a
continuous distribution.2

One desirable feature of Holland and Thayer's kernel
includes a method for estimating the standard error of the
any given value of the score to be equated. A description
estimating the standard errors is beyond the scope of this
presentation of this method, see Holland, King, and Thayer

The procedure for kernel equating

Holland and Thayer's kernel equating method consists
steps:

equating is that it
equated score, for
of the method of
paper. For a
(1989).

of three essential

1. Estimate the discrete score distributions of the tests to be equated, in
the population of test-takers.

2. Replace these discrete distributions with "continuized" distributions, by
replacing each discrete frequency with a normal "kernel" distribution.

3. Determine the equipercentile equating relationship between the continuized
distributions.

The first step varies, depending on the equating design. In an
equivalent-groups design, the score distributions in the population are
estimated by smoothing the score distributions observed in the sample, using a
log-linear model (Holland and Thayer, 1987). In an anchor equating design,
the process of estimating population distributions consists of two sub-steps.
The first sub-step is to apply log-linear smoothing to each of the two
observed joint distributions (of the score to be equated and the anchor
score). The second sub-step is to use the anchor score as a conditioning
variable to estimate the population distribution of the scores to be equated.
This procedure is sometimes called "frequency estimation". It is based on the
assumption that the conditional distribution of each score to be equated,
conditioning on the anchor score, is the same in the population as in the
smoothed sample distribution.

The second step in this procedure -- the continuization step --
specifies the form of each kernel distribution (normal) and its mean (the
discrete score) but leaves its variance unspecified. The variance of all the
kernel distributions is controlled by a single parameter, called "h". The
value of this parameter can have a great influence on the shape of the
continuized distribution. If the value of h is small, e.g., 0.3, the
individual kernel distributions will be quite narrow, with little overlap, and
the continuized distribution that results from combining them will be spiky in
shape. If the value of h is larger, e.g., 1.0, the kernel distributions will

2The common procedure of using linear interpolation to determine the
equated scores in equipercentile equating Is mathematically equivalent to
continuizing the distribution of scores on the reference form (the "old form")
with kernel distributions that are uniform and non-overlapping.
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overlap considerably, and the continuized distribution will be quite smooth

(extending beyond the range of scores actually observed). As h gets larger,

the individual kernel distributions overlap even more, and the continuized

distribution tends to resemble a normal distribution.3 Since the
equipercentile relationship between any two normal distributions is linear, an
equating of two continuized distributions produced with large values of h will

tend to be approximately linear. Holland and Thayer have suggested a
criterion for choosing a value of h to continuize a given discrete
distribution: choose the value that minimizes the sum of squared differences

between the discrete frequencies and the corresponding densities of the
continuized distribution (Holland and Thayer, 1989, pp. 30-33). This

criterion is programmed into the computer programs that were used in the

present study.

The procedure for the study

The method and the data for this study were identical to those for an
earlier study (Livingston, 1993) on the accuracy of another method of equating

in an anchor design. The study was designed to create a situation in which
the equating relationship in the population was known. The data were taken

from the responses of 93,283 high school students to the multiple-choice
section of the Advanced Placement Examination in United States History. From

the 100 items in this section of tha examination, the investigators
constructed two overlapping subforms of 58 items each. The overlap consisted

of 24 items appearing in both subforms to serve'as an anchor for equating.
The subforms were constructed to be as similar in content as possible, while

differing systematically in difficulty. The more difficult of the two
subforms was labeled "Form A"; the less difficult subform was labeled "Form

B". From each test taker's responses to the items, the investigators computed
three scores: a score on Form A, a score on Form B, and a score on the 24-item

anchor test.

The distributions of scores on the two subforms in the full population
of test-takers indicated a substantial difference in difficulty. The mean
scores were 29.2 items correct (50%) on Form A and 35.9 (62%) on Form B. The

standard deviations were 8.7 items on Form A and 8.8 on Form B. Thus, the

difference in the mean scores was about three-fourths of a standard deviation.
The population distribution of scores on Form A showed a slight positive skew;
the distribution of scores on Form B showed a substantial negative skew.

The next step was to determine the equating relationship between Forms A
and B in the test-taker population. This step was accomplished by a direct
equipercentile equating of the observed score distributions on Forms A and B
in the entire group of 93,283 test-takers, with no continuization or
smoothing. The anchor test played no part in this criterion equating. The

3Although Holland and Thayer's kernel equating involves no assumption
about the form of the distribution of scores on either form of the test, a
user who chooses a large value of h is, in effect, assuming that the scores

have approximately normal distributions in the population.

3
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results of this direct, full-population equating served as the criterion for
evaluating the results of the equatings based on samples of examinees.'

The rest of the study consisted of selecting samples of examinees,
applying Holland and Thayer's kernel equating method in the samples, and
comparing the kernel equating results with the results of the criterion
equating. The procedure was as follows:

1. Select two samples of test-takers, by simple random sampling without
replacement. Arbitrarily associate each sample with one of the two subforms.
For test-takers in the "Form A" sample, treat the score on Form B as unknown;
for test-takers in the "Form B" sample, treat the score on Form A as unknown.

2. Use the data from these two samples to estimate the population
distributions of scores on the tests to be equated, by performing the
smoothing and frequency estimation steps described above. In the smoothing
step, preserve the first bivariate moment (the correlation of the test score
and the anchor score) and the first three univariate moments of each variable
(mean, standard deviation, and skewness). If the sample size is at least 100,
also preserve the fourth univariate moment (kurtosis) of each variable.5

3. Continuize the estimated population distributions, using h-values computed
to minimize the squared-difference criterion. Use these distributions to
equate Form A to Form B. Also estimate the standard errors of the equated
scores by Holland and Thayer's procedure.

4. Repeat Step 3,
distributions.

5. Repeat Step 3,
distributions.

using the arbitrarily specified h-value of 0.3 for both

using the arbitrarily specified h-value of 1.5 for both

6. Replace the test-takers into the population available for sampling.

The study involved fifty replications of this procedure under each of four
sample-size conditions: samples of 200, 100, 50, and 25 test-takers. These
small sample sizes reflect the investigators' concern about the accuracy of
equating in small samples of examinees and their hope that Holland and
Thayer's method might offer an improvement over the methods now used.

'With responses from more than 90,000 test-takers available, the
investigators decided that an equating of unsmoothed distributions would
provide the best available criterion. In retrospect, it appears that an
equating of smoothed distributions would have provided a better criterion, if
the smoothing model closely preserved the overall shape of the distributions.

5These choices of the number of moments to preserve were based on the
results of the earlier study (Livingston, 1993).
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ThE. results

To evaluate the accuracy of the equating in a study such as this one, it
is necessary to compare the results of the anchor equatings in the samples of
test-takers with the results of the direct equating in the full population.
This comparison requires a statistic that summarizes the differences between
the sample results and the population result. A statistic that is commonly
used to summarize such differences is the root-mean-squared deviation (RMSD).
Because the accuracy of the equating tends to differ greatly from one part of
the score range to another, the RMSD was computed separately at each score
level on the form to be equated (Form A). For clarity, this statistic will be
referred to as the "conditional RMSD". The formula appears in the appendix to
this report. The smaller the conditional RMSD at a particular score level,
the more accurate the equating at that score level. The values of the
conditional RMSD tend to trace a smooth curve, lower in the middle of the
score distribution, where data are plentiful, and higher at the ends, where
data are sparse.

Figure 1 shows twelve such curves. For each of four sample sizes (200,
100, 50, and 25 test-takers) there are three curves, for the three different
levels of the h-parameter. The units of the conditional RMSD are raw-score
points on Form B, the reference form; one point equals approximately 0.1
standard deviations. The percentiles indicated on the horizontal axis refer to
the distribution of raw scores on Form A in the full population. The graphs
in Figure 1 show a clear effect of sample size on the accuracy of the
equating, as might be expected, but very little effect for the choice of h-
values. (The computed values of the h-parameter ranged 0.60 to 0.74, as
compared with the specified values of 0.3 and 1.5). There was a tendency for
the equatings based on an h-value of 1.5 to be slightly less accurate at the
upper end of the distribution and slightly more accurate at the lower end of
the distribution than the equatings based on smaller h-values. Otherwise, the
choice of h had essentially no effect on the accuracy of the equating.

Figures 2 to 5 show the bias in the equatings, computed under the
assumption that an unbiased equating procedure would tend to replicate the
direct equipercentile equating in the full population. Under this assumption,
the bias at each score level is indicated by the difference between the
population equating result and the mean of the fifty sample equating results.
The curves in Figures 2 to 5 show some irregularities at the low and high ends
of the score scale -- below the 1st percentile and above the 99th percentile
of the population distribution -- and the irregularities are similar for all
four sample size conditions. The source of the irregularities appears to have
been the population equating used as a criterion, which did not involve pre-
smoothing of the score distributions.

In Figures 2 to 5, the value of the h-parameter does appear to have a
noticeable effect -- one that is easy to explain. The equating in the
population was strongly curvilinear. A linear equating would have produced
equated scores that were higher at the ends of the score range and slightly
lower in the middle. In kernel equating, the larger the h-value, the more
similar the continuized distributions, and, therefore, the more nearly linear
the equating transformation. For any pair of samples of test-takers, the

5
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kernel equatings using h 1.5 would tend to be more nearly linear than the
equatings using the smaller h-values. Therefore, the equatings using h 1.5

would tend to produce equated scores that were higher at the ends of the score
scale and slightly lower in the middle than the equated scores based on the
smaller h-values. That is exactly what Figures 2 to 5 show. In some cases

the larger h-value resulted in a smaller bias, in some cases a larger bias,
and in one case, an approximately equal but opposite bias.

Holland and Thayer's kernel equating method produces not only an equated
score for each raw score on the form to be equated, but.also an estimate of

the standard error associated with it. Under normal circumstances, the
accuracy of these estimates would be impossible to determine, but the special
conditions of this study provide another way to estimate the standard error of
the equated scores at each score level. The fifty replications of the
equating (each with different samples of test-takers) under each set of
conditions (sample size, h-value) provide a distribution of fifty equated
scores on Form B for each score on Form A. The standard deviation of this
distribution is an empirical estimate of the standard error of equating at

that score level.

The fifty replications also provide a distribution of fifty separate
Holland-Thayer estimates of the standard error of equating. Figures 5 to 9

compare this distribution with the single empirical estimate at each score

level. Instead of attempting to show the entire distribution of fifty
Holland-Thayer estimates at each score level, the figures show selected
percentiles of the distribution. Figures 5 to 9 show these results only for
the kernel equatings using the computed h-values; the results for the
specified h-values of 1.5 and 0.3 were similar. The empirical estimates and
the Holland-Thayer estimates of the standard error tended to agree fairly well

in the middle of the score range, where there was plenty of data. However,

the Holland-Thayer estimates in the smaller samples (50 or less) tended to be
systematically larger than the empirical estimate in the upper half of the
score range, with the difference becoming substantial above score 45 (the 95th

percentile of the population distribution).

Figures 10 to 13 compare the accuracy of the kernel equating results
with the results of two other equating procedures, applied to the same data in
an earlier study (Livingston, 1993). Both were "chained" procedures, in which
Form A was equated to the common-item anchor test in one sample of test-
takers, the anchor test was equated to Form B in the other sample of test-
takers, and the composition of the two resulting functions was taken as the
function equating Form A to Form B. The equatings were equipercentile
equatings, using linear interpolation to determine the equated scores. One

procedure was an equating of the observed distributions. The other was an
equating of smoothed distributions, using the same smoothing procedure as in
the kernel equatings in the present study. The kernel equating results shown
in Figures 10 to 13 are those produced by the computed h-values, but, as shown
previously in Figure 1, either of the two specified h-values (1.5 or 0.3)
would have produced nearly identical results.

Figures 10 to 13 show that the equating of smoothed distributions --
with or without the continuization step -- produced much more accurate results

6



than the equating of observed (unsmoothed) distributions. The full kernel
equating procedure provided some additional accuracy at the low end of the
score range (below the 5th percentile of the population distribution), when
applied to the larger samples of 100 or more test-takers.

The methods represented in Figures 10 to 13 include a chained
equipercentile equating of smoothed discrete distributions and a kernel
equating of distributions produced by frequency estimation (conditioning on
the anchor score), followed by a continuization step. If the difference in
the accuracy of these two methods were larger, it would be interesting to
determine how much of the difference was attributable to the continuization
procedure and how much to the frequency estimation approach vs. the chained
approach. However, as Figures 10 to'13 show, in the portions of the score
range where most of the data are found, the difference in accuracy is quite
small. A more fruitful direction for further research would be to investigate
the extent to which the results of this study can be generalized to other
tests, to other populations of test takers, and especially to situations in
which the groups of test-takers taking the two forms to be equated differ
systematically in ability.
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Appendix:
Formula for the Root-Mean-Squared Deviation

Let j index the pairs of samples of a given size: j = 1, 2, . . , 50.

Let x represent a score on Form A.

Let yx represent the score on Form B that equated to x in the direct equating
in the population.

A
Let yxj represent the score on Form B that equated to x in the anchor

equating in the jth sample.

The conditional RMSD at score x is computed by

50

RMSD (x) =
5o E

xJ.
yx) 2

j=3.
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